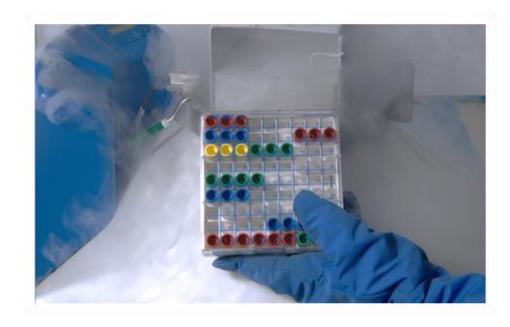


Introduction to plant cryopreservation

Bart Panis

Principal researcher Alliance of Bioversity International and CIAT/ KU Leuven



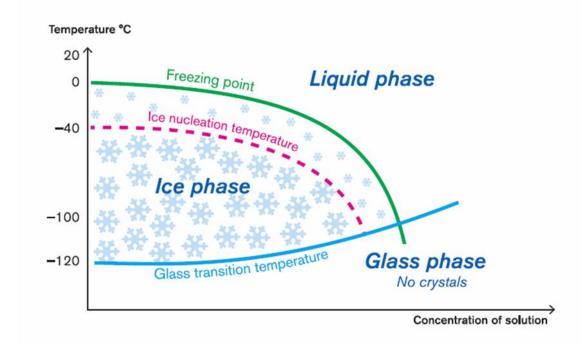
Cryopreservation

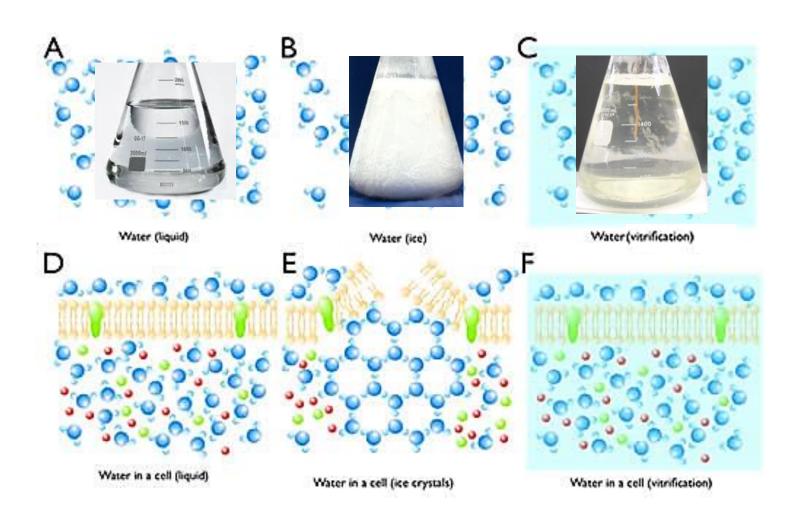
Cryopreservation is a process where cells or whole tissues are **preserved** by cooling to low **sub-zero temperatures**, such as (typically) **-196** °C (the boiling point of liquid nitrogen).

At these low temperatures, any biological activity, including the biochemical reactions that would lead to cell ageing (and cell death), is effectively stopped.

Practically: storage happens in **big Dewar flasks** filled with liquid nitrogen

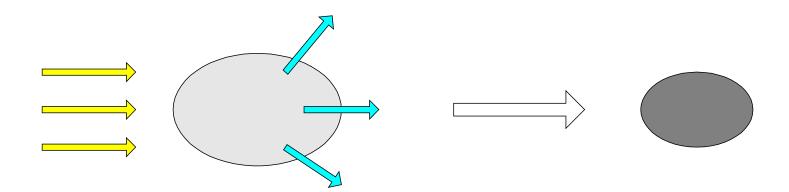
Freezing induced injury


- 1/ Effect of low (not always "freezing" temperatures) (membrane stability, metabolism,.....)
- 2/ Mechanical effects of extracellular ice crystals at cell surfaces (breaking of tissues, disconnection of cells)
- 3/ Dehydration related effects (In nature, during cryopreservation when slow freezing rates are applied). Results in solution and mechanical effects
- 4/ Injury due to intracellular ice formation
 - ⇒ Mechanical disruption of protoplasmatic structure, loss of semi-permeability


Freezing induced injury

All cryogenic strategies rely on the prevention of intracellular ice crystal formation. The only way to prevent ice crystal formation at ultra-low temperatures without an extreme reduction of water content is through 'vitrification' (solidification of a solution without ice-crystals).

Vitrification

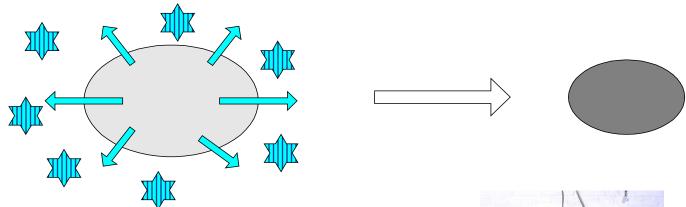

HOW???

1/ Concentration of cellular solution

2/ Rapid cooling and thawing rates

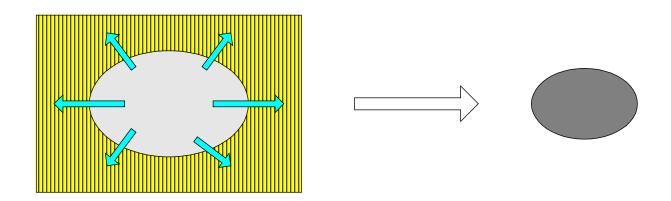
1. Concentration of cellular solution through air drying

- Sterile air from laminar air flow cabinet



2. Concentration of cellular solution through freeze dehydration

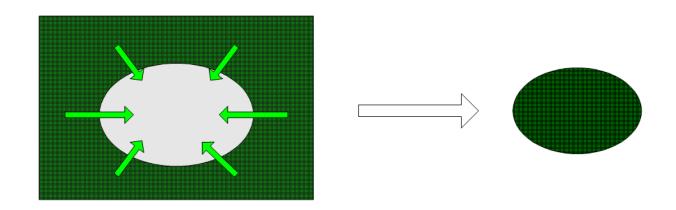
Cooling rates: 0.3 to 10°C/min until -30 to -50°C


- Computer driven cooling device
- stirred methanol bath
- propanol container (Mr Frosty)

3. Concentration of cellular solution through osmotic dehydration

Non-penetrating cryoprotective substances

Sugars

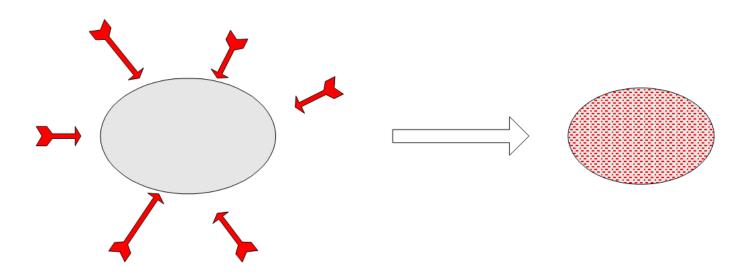

Sugar alcohols

High molecular weight additives (PEG,....)

EG at low (0°C) temperature

4. Concentration of cellular solution through the addition of penetrating cryoprotective substances

Colligative effect of penetrating cryoprotective substances


DMSO

Glycerol amino acids

EG at high temperature (RT)

5. Concentration of cellular solution through adaptive metabolism

Induced by temperature changes, changes in light regime, osmotic changes, ABA,....

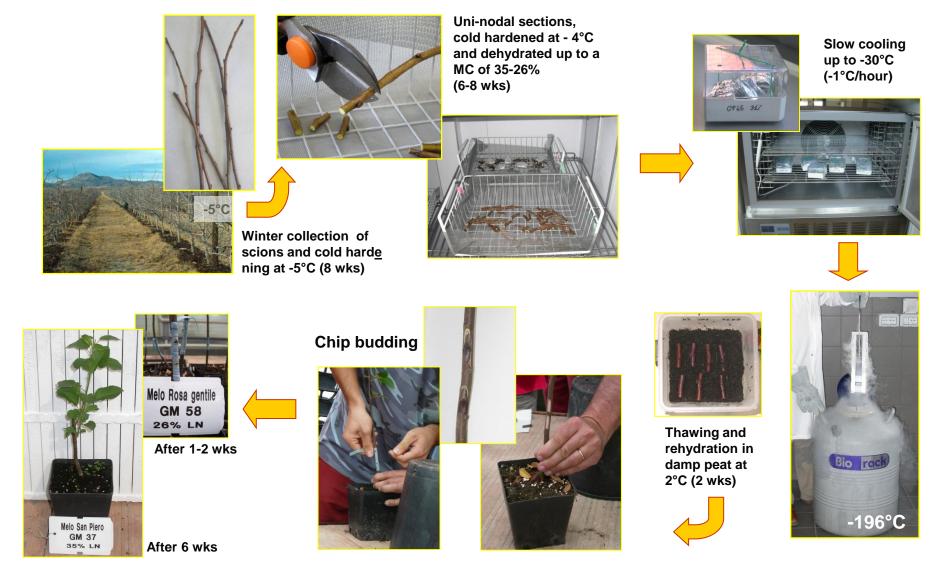
Result: increase in proteins, sugars, glycerol, proline, polyamines, glycine betaine,... which have (among others, see later) colligative effects

Induction is genetically defined

Different cryopreservation protocols

Methods for cryopreservation

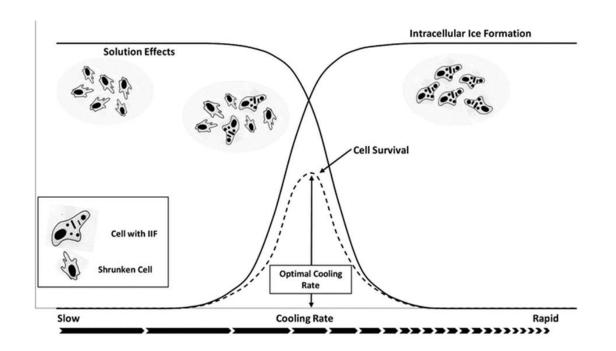
- Dormant bud cryopreservation
- Slow (classical) freezing
- Encapsulation-dehydration
- Droplet freezing
- Fast Preculture (+ dehydration)
- Vitrification (PVS2, PVS3,...)
- Encapsulation-vitrification
- Droplet vitrification
- V-cryo-plate procedure
- D-cryo plate procedure



Dormant bud cryopreservation (credits Maurizio Lambardi)

Methods for cryopreservation

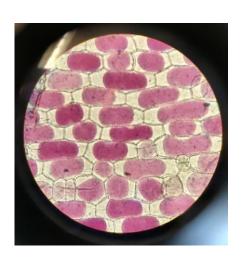
- Dormant bud cryopreservation
- Slow (classical) freezing
- Encapsulation-dehydration
- Droplet freezing
- Fast Preculture (+ dehydration)
- Vitrification (PVS2, PVS3,...)
- Encapsulation-vitrification
- Droplet vitrification
- V-cryo-plate procedure
- D-cryo plate procedure

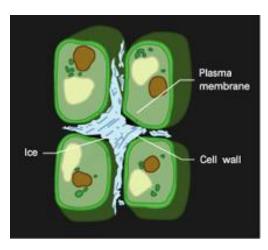

Classical (slow) freezing protocol

- Cold hardening and/ or Osmotic dehydration and/or Sugar hardening
- Penetrating cryoprotectants (often DMSO)+ non-penetrating cryoprotectants
- Freeze dehydration at 1°C /min to -35°C

Parameters to be optimised

- Hardening
- Cryoprotective mixture (Often including DMSO)
- Cooling rate
- Holding temperature





Problem Plasmolysis

Extracellular ice

- © : Applicable to cell suspensions and callus (unorganised tissues)
- More limited application to organised tissues (meristems cultures)
 Expensive cooling devices are sometimes needed

Methods for cryopreservation

- Dormant bud cryopreservation
- Slow (classical) freezing
- Encapsulation-dehydration
- Droplet freezing
- Fast Preculture (+ dehydration)
- Vitrification (PVS2, PVS3,...)
- Encapsulation-vitrification
- Droplet vitrification
- V-cryo-plate procedure
- D-cryo plate procedure

Vitrification

Sakai et al., 1990 (PVS2 vitrification nucellar cells of navel orange)

Typical protocol

- Loading: LS: 2 M glycerol + 0.4 M sucrose
- Dehydration: PVS2: 30 % glycerol + 15 % EG + 15 % DMSO + 0.4 M sucrose
- Following freezing and thawing: deloading in 1.2 M sucrose
- Cold Hardening
- Sugar hardening + osmotic dehydration + penetrating cryoprotectants (at 0°C or RT)

Parameters to be optimised

- Sugar hardening
- Loading
- Dehydration with vitrification solution (temp, time, composition,...)

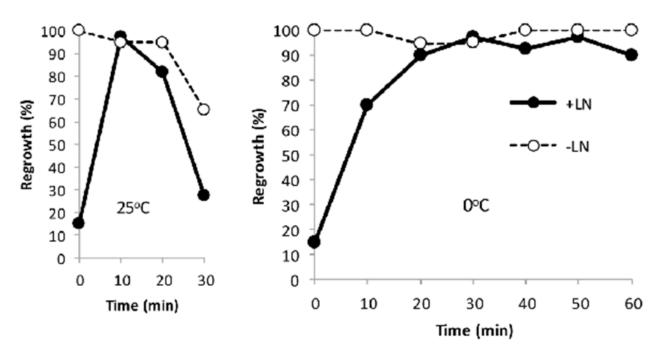


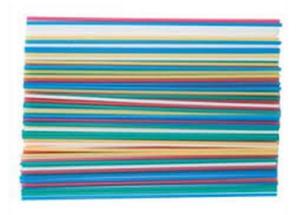
Fig.1. Effect of exposure time to PVS2 at 25 or 0 °C on recovery growth from wasabi shoot tips cooled to -196 °C by vitrification. Shoot tips (1 mm size) were precultured with 0.3 M sucrose for 1 d and then treated with a mixture of 2 M glycerol plus 0.4 M sucrose (LS solution) for 20 min at 25 °C. These shoot tips were treated with PVS2 for different lengths of time prior to immersion in LN. (Matsumoto et al., 1994).

- ©: Protocol applied to a wide range of culture types and plant species No slow cooling devices are needed
- ② : Susceptibility to 'toxic' Vitrification solution is species dependent rather time consuming and labour intensive protocol

Methods for cryopreservation

- Dormant bud cryopreservation
- Slow (classical) freezing
- Encapsulation-dehydration
- Droplet freezing
- Fast Preculture (+ dehydration)
- Vitrification (PVS2, PVS3,...)
- Encapsulation-vitrification
- Droplet vitrification
- V-cryo-plate procedure
- D-cryo plate procedure

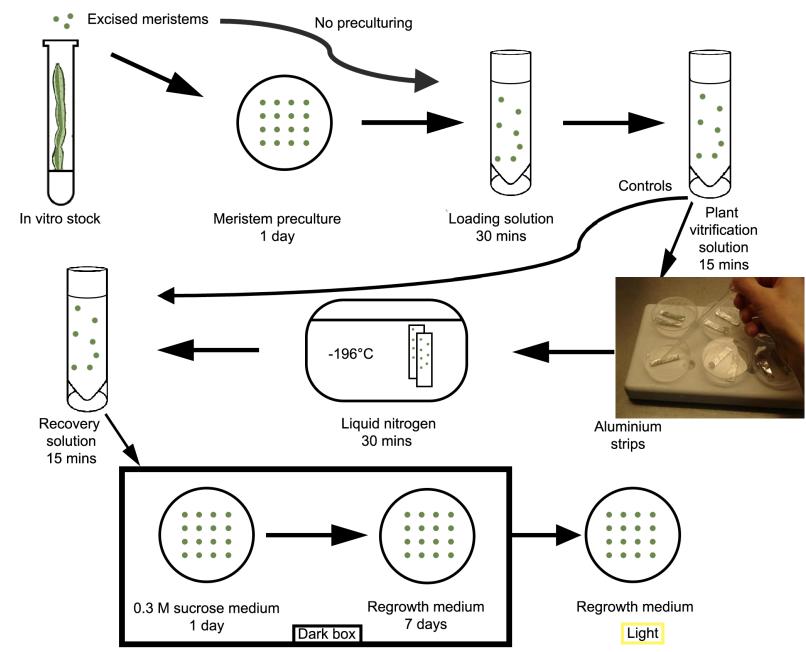
Droplet-vitrification


Towill and Jarret, 1992 (First "droplet vitrification" on sweet potato)

Combination of the Classical vitrification (with PVS2 or PVS3 or....) and the application of ultra fast freezing and ultra fast warming (to avoid respectively crystallization and cold crystallization).

HOW? A closer contact between the tissue and the cooling agent.

- Cryotubes (about 6°C/sec)
- Semen straws (about 60°C/sec)(potato)
- Droplet vitrification (about 130°C/sec)



Droplet vitrification

Survival

Methods of conservation

- *In situ* : Conservation in 'normal' habitat
 - rain forests, gardens, farms
- Ex Situ:
 - Seed collections
 - Field collection, Botanical gardens
 - In vitro collection
 - Normal growth
 - Slow growth (temp →, O₂ →, H₂O →, medium ~)
 - Cryopreservation (-196°C)
- (DNA Banks)

CIAT Bean genebank, Colombia

Many Critical Food and Nutrition Security Crops Cannot be Conserved in Perpetuity by Seeds

- Seedless crops
- Crops that do not breed true from seeds
- Crops with recalcitrant or shortlived seeds

Solution:

- cryopreservation of seed or embryos
- Store vegetative tissues

Methods of conservation

- In situ: Conservation in 'normal' habitat
 - rain forests, gardens, farms
- Ex Situ:
 - Seed collections
 - Field collection, Botanical gardens
 - In vitro collection
 - Normal growth
 - Slow growth (temp ⋈, O₂ ⋈, H₂O ⋈, medium ~)
 - Cryopreservation (-196°C)
- (DNA Banks)

IPK potato collection, Germany

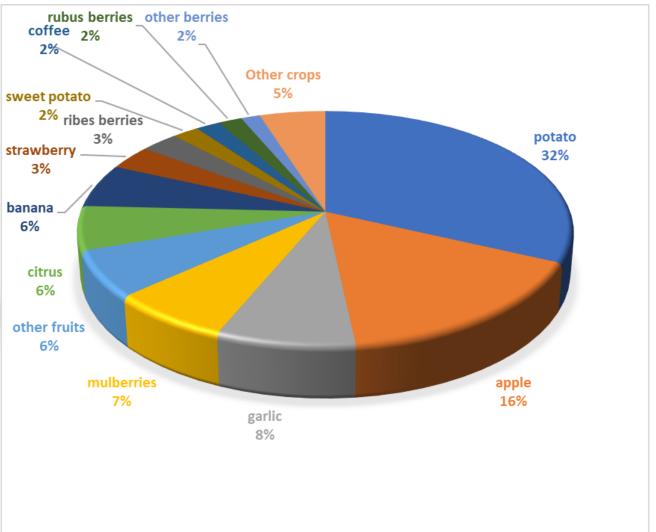
Bioversity International in vitro banana collection, Belgium

Bioversity International Cryobank, Belgium

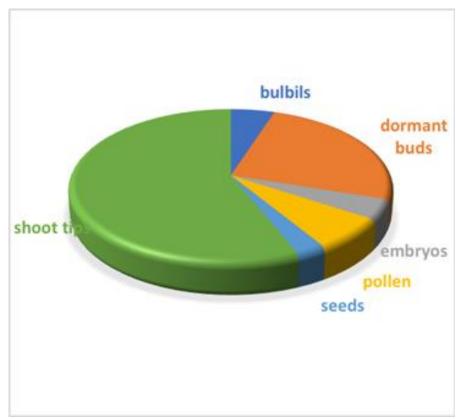

FEASIBILITY STUDY FOR A SAFETY BACK-UP CRYOPRESERVATION FACILITY

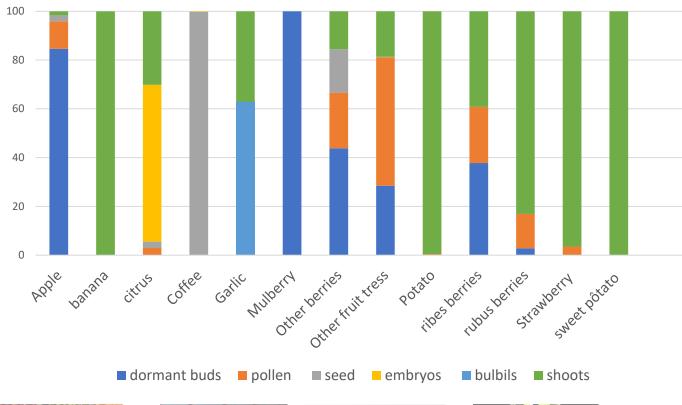
INDEPENDENT EXPERT REPORT: JULY 2017

Swiss Agency for Development and Cooperation SDC

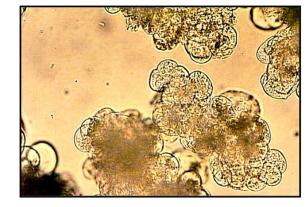


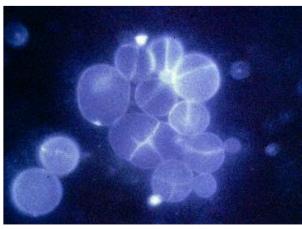
Only 17 crops have cryopreserved collections of more than 100 accessions!

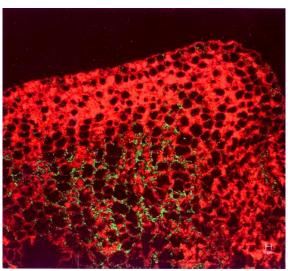




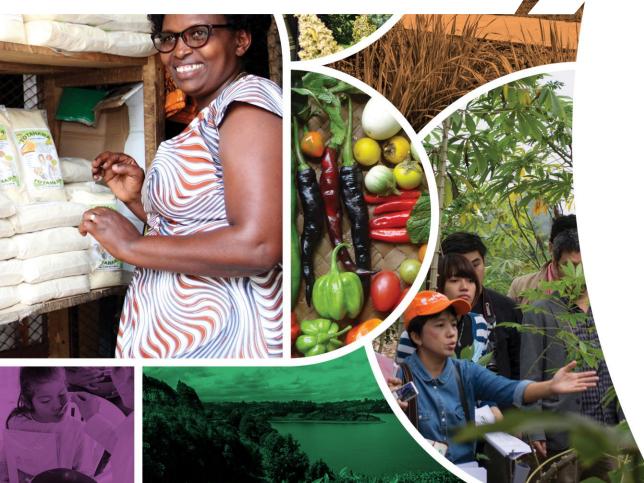
Institute	N° of Acc.	Crop	Cryopreservation Method
Bioversity International, Leuven, Belgium	1100	Banana	Droplet vitrification
Association F0rêt-CELlulose (AF0CEL), France	440	Elm	Dormant bud freezing
International Center for Tropical Agriculture (CIAT), Cali, Colombia	480	cassava	Droplet vitrificationEncapsulation/dehydration
Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Gatersleben, Germany	213	Garlic	Droplet vitrification
International Potato Center (CIP), Lima, Peru	3227	Potato	Droplet vitrification
Julius Kühn-Institut (JKI), Institut für Züchtungsforschung an Obst, Dresden, Germany	194	Strawberry	Vitrification
Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Gatersleben, Germany	1818	Potato	Droplet freezingDroplet vitrification
National Agrobiodiversity Center (NAAS), RDA, Suwon, South Korea	1158	Garlic	Droplet vitrification
National Institute of Agrobiological Sciences (NIAS), Tsukuba, Japan	1236	Mulberry	Dormant bud freezing
USDA-ARS, Fort Collins and Corvallis, USA	2155	Apple	Dormant bud freezing
USDA-ARS, Fort Collins and Corvallis, USA	451	Citrus	Droplet vitrification
Tissue Culture and Cryopreservation Unit, NBPGR, Delhi, India	329	Mulberry	Dormant bud freezing
Crop Research Institute, Prague, Czech Republic	157	Garlic	Droplet vitrification







Eradication of viruses

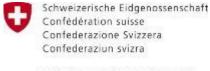


Conclusions

- The conservation and sustainable utilization of plant genetic resources are the keys to improving agricultural productivity and sustainability
- Different storage methodologies are available; choice depend on species, available plant materials and facilities
- For long term conservation, cryopreservation should be considered for vegetative materials as well as for seeds
- Cryopreservation can also be used for eradication of viruses (and other microorganisms), as breeding tool, and as commercial stock deposit

Acknowledments Partnerships

- Natalia Sleziak
- Hans Krohn
- Edwige Andre
- Bart Piette
- Hannes Wilms
- Ines van den houwe
- Elena Popava



Australian Centre for International Agricultural Research

Swiss Agency for Development and Cooperation SDC

Thanks!