
STATUS OF THE NATIONAL ALLIUM COLLECTION

- PORTUGAL

Isabel Gomes da Silva INIAV – BPGV (National Genebank)

Seventh Meeting of the Allium Working Group, 11-12 October 2022, Skierniewice, Poland

Banco Português de Germoplasma Vegetal

Portugal and BPGV Collections

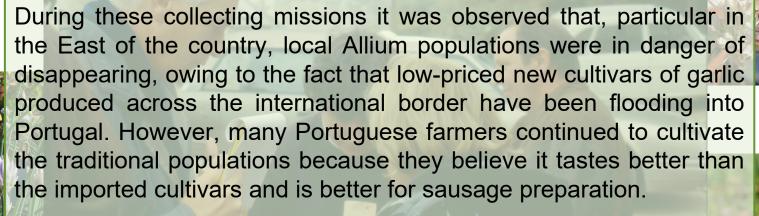
Portuguese Plant Germplasm Bank

(BPGV), located in <u>Braga</u> houses representative collections of germplasm of the more important agricultural resources of mainland Portugal and the Islands, Madeira and Azores.

Group of Species	Total
Aromatic and Medicinal Plants	1 257
Cereals	27 086
Fibers	201
Forrages and Pastures	2 928
Vegetables	6 417
Grain legumes	6 876
Others	22
Total	44 752

As a result of 131 collecting missions

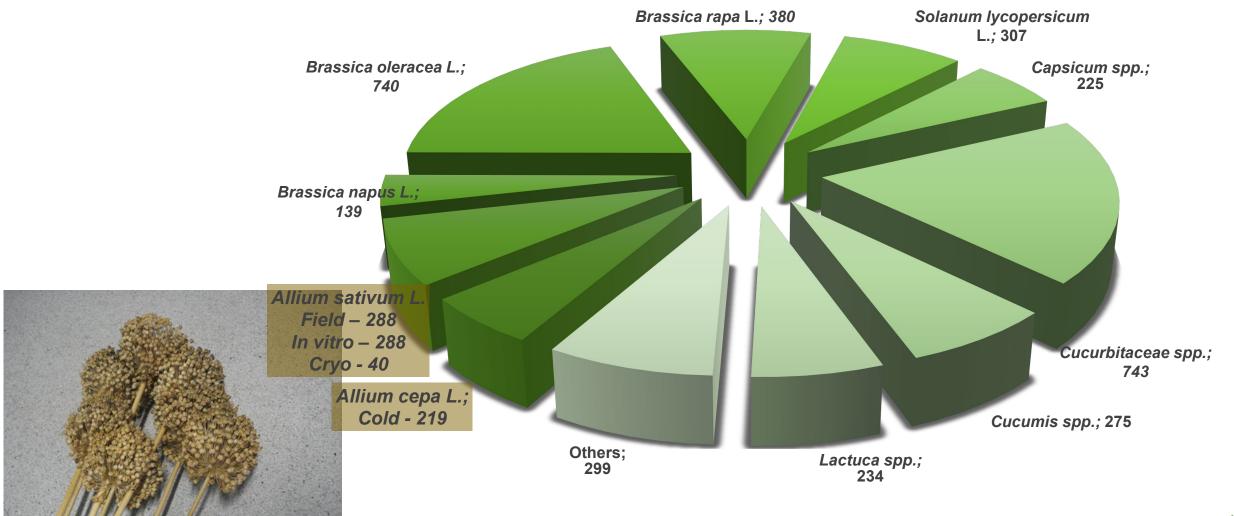
Collecting Missions



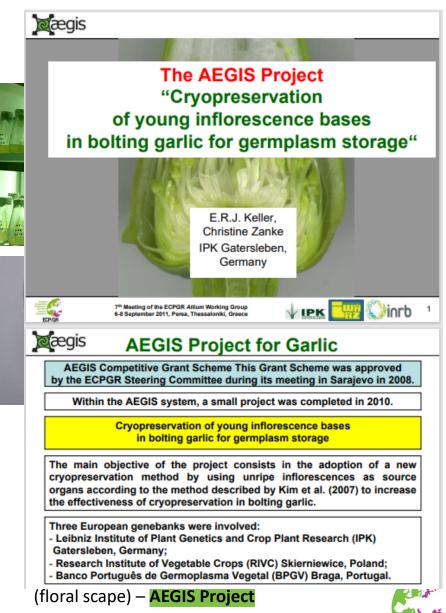
The Key point

1990 a 1994 - International collecting mission for vegetables (include A. sativum e A. cepa)

Dave Ashley, Horticulture Research Institute


1996 - International collecting mission for genus Allium

Takeomi Etoh, University of Kagoshima, Japan (local varieties of A. sativum that produce seeds)


Vegetable Collection

Number of accessions in collection - Portugal

Species/Crop	Ex situ	Field	Cryo	in vitro	Total
Garlic (Allium sativum L.)		288	40 *	288	616
Shallot (Allium ascalonicum L.)		1			1
Common onion (Allium cepa L.)	219				219
Leek (Allium porrum L.)	12	3			15
Wild Alliums					
Allium ampeloprasum		14			14
Allium roseum		1			1
Allium vineale		1			1
Allium scorzonerifolium	1				1
Allium spp.		6			6
TOTAL	232	314	40	288	546
TOTAL (with duplicates)					873

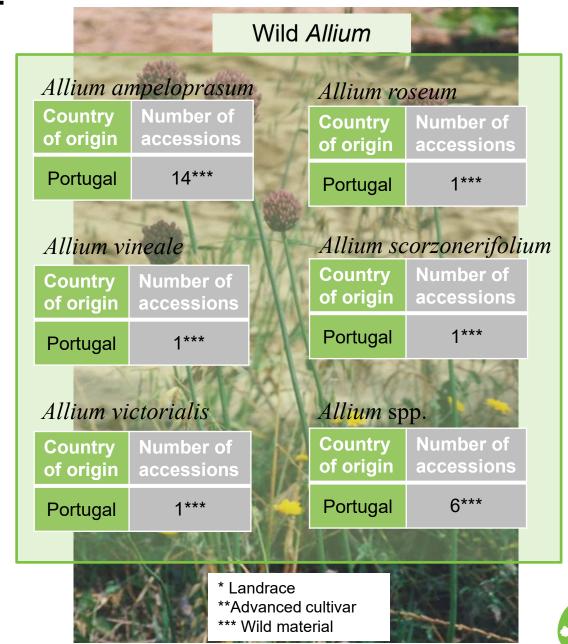
Safety duplication percentage

Species/Crop	%
Garlic (Allium sativum L.)	99
Common onion (Allium cepa L.)	32
Leek (Allium porrum L.)	7
TOTAL	70

Comments: We have made an effort to increase the safety duplication of onion increasing the seed multiplication. This activity is in progress.

Structure of the collection - PORTUGAL

Landrace or Advanced cultivar


GARLIC

Country of origin	Number of accessions	Country of origin	Number of accessions
Portugal	275*	Germany	1*
Portugal	5**	Greece	1*
Bulgaria	2**	Poland	3*
Tunisie	1*	SHALLO	Т

ONION

Country of origin	Number of accessions
Portugal	206*
Portugal	3**
France	2**
Italia	3**

Country of origin	Number of accessions
Portugal	4*
Portugal	1**
LEEK	
LEEK Country of origin	Number of accessions

Biology status of the **Garlic collection** and ability to flower

Biological status	Number of accessions
Advanced or improved cultivar	7
Traditional cultivar/landrace	281

Ability to flower	Number of accessions
Bolting garlic	46
Non bolting	146

In 1999, the characterization and preliminary evaluation of garlic was based on the "minimum list of descriptors" published by the IBPGR (1992, 1996).

Since 2011, the characterization was based on the a more complete list of descriptors that was published by IPGRI, in 2001.

Status of documentation

- Passport Descriptors used: FAO/IPGRI multi-crop passport descriptors (2015)
- Morphological Descriptors used: <u>IPGRI Descriptors for Allium spp.</u> (2001)

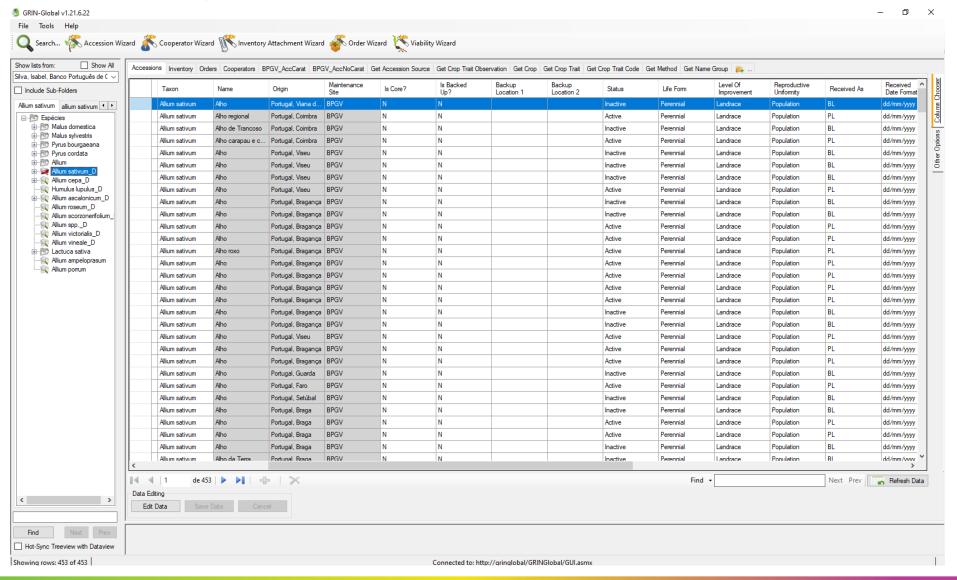
All the information (collecting, inventory and morphological characterization) of the *Allium* collection (546 accessions) conserved in the Portuguese Genebank is documented and is registered in the Grin Global.

Species/Crop	% Documented
Garlic (Allium sativum L.)	
Common onion (Allium cepa L.)	
Leek (Allium porrum L.)	100
Shallot (Allium ascalonicum L.)	
Wild Allium	

C&E data to EURISCO:

Not yet; Only passport data

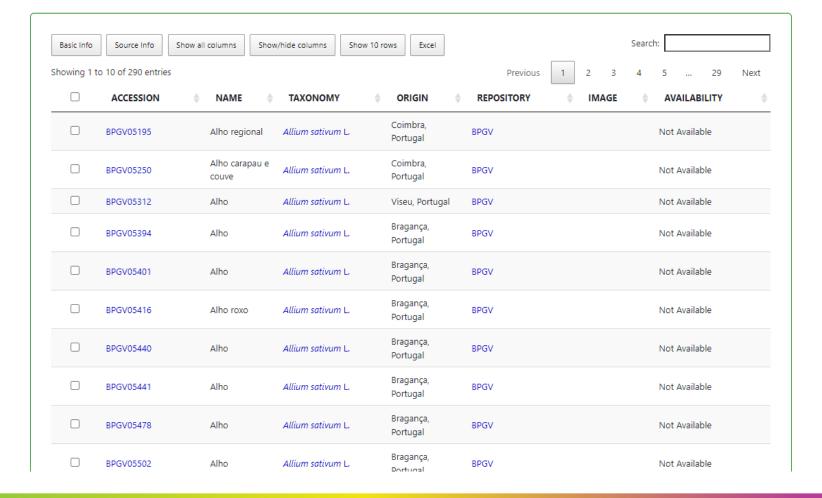
Pictures available:


Not yet

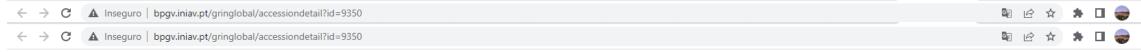
Species/Crep	% Characterized			
Species/Crop	Morphological	Molecular	Chemical	
Garlic (Allium sativum L.)	99 (285 of 288 accessions)	96 (280 of 288 accessions)	94 (273 of 288 accessions)	
Onion (Allium cepa L.)	77 (169 of 219 accessions)	9 (20 of 219 accessions)		
Leek (Allium porrum L.)	7 (1 of 15 accessions)			

Status of documentation

Documentation system : GRIN GLOBAL



Your query included: All accessions allium sativum


☐ View Observation Data

Version: 2.2.0

Selected item(s) below: Add to Cart View Accession Details

Instituto Nacional de Investigação Agrária e Veterinária, I.P.

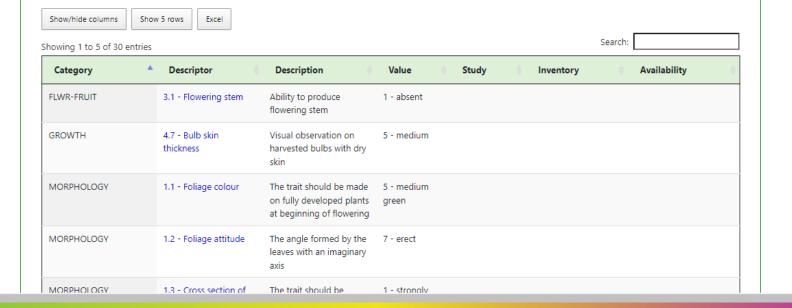
Banco Português de Germoplasma Vegetal

Welcome!

GRIN-Global Banco Português de Germoplasma Vegetal

Log in

New User


Version: 2.2.0 Accessions Descriptors Reports GRIN Taxonomy ▼ GRIN ▼ Help Contact Us Your Profile ▼

Details for: BPGV05502, Allium sativum L., Alho

Summary Passport Taxonomy Other Pedigree IPR Observation

Observations

Phenotype Data

Acquisitions

Strategy:

 Collecting Missions of traditional cultivar/landrace and/or crop wild relatives (financed by projects)

- Exchange between genebanks

- Offered by farmers

Use of the collection

Availability of material

Available, depending on the amount of material and under sMTA

Projects with Allium Group:

PRODER (2011-2015) - Collecting, Conservation and Documentation of Genetic Resources of Agricultural and Horticultural Species

PRODER, PA 18618 (2011-2015) - Conservation, Characterization and Valorization of Horticultural Species

<u>AEGIS (2008 – 2010) - Cryopreservation of young</u> inflorescence bases in bolting garlic for germplasm storage

AGRO 238 (2001 – 2004) - Evaluation, conservation and acquiring of virus-free material from populations of regional Allium

PAMAF 1013 (1995 - 1999) - Collecting, evaluation, conservation and use of the germplasm of herbaceous species in the North Region

Ongoing projects

<u>PDR2020</u> – Genetic Resources Conservation of Vegetables

Main problems

Field collection

- Climatic change. Due to its geographical characteristics, Portugal is among the European countries with the greatest vulnerability to these changes. The temperature increases, water heats, evaporates faster, and the consequences translate into droughts and intense rainfall. This affects a good development of the Allium crops: periods of high humidity in the initial vegetative cycle and periods of less humidity/droughts in the middle of the vegetative cycle.
- **Productivity/Viability.** Generation after generation it's observed that the material is less productive. The age of material is fundamental to a good development of the plant.

Cold conditions

- **Seed aging** decreases seed viability during storage, is a major problem for successful plant growth and productivity and leads to seed deterioration. For the Allium genus, the seed also loses viability very quickly. The storage time is short.

• In vitro collection

- **Viability**. Generation after generation it's observed that the material is less productive. In many cases, after many sub-cultures, the plant material does not develop in to a whole plant. This methodology is medium term conservation and this is visible the decrease in vaibility.

Cryoconservation

- **Preliminary protocol.** This methodology is long term conservation and ideal for species of vegetative propagation. Until now, the % of regrowth is still not enough for the material to be safe. The protocol is still under testing.

