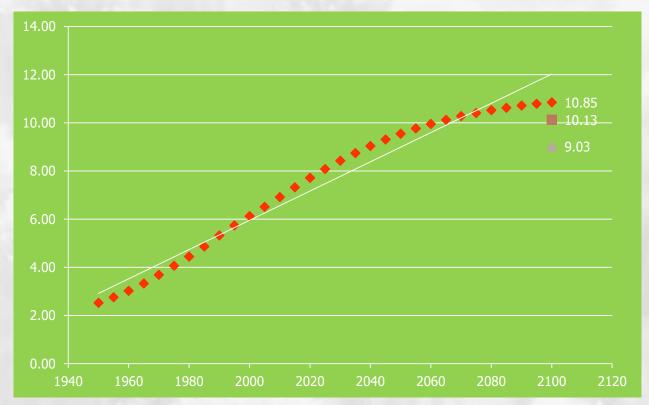
UNIVERSITY^{OF} BIRMINGHAM

Towards effective networking for European (and global) in situ plant agrobiodiversity conservation

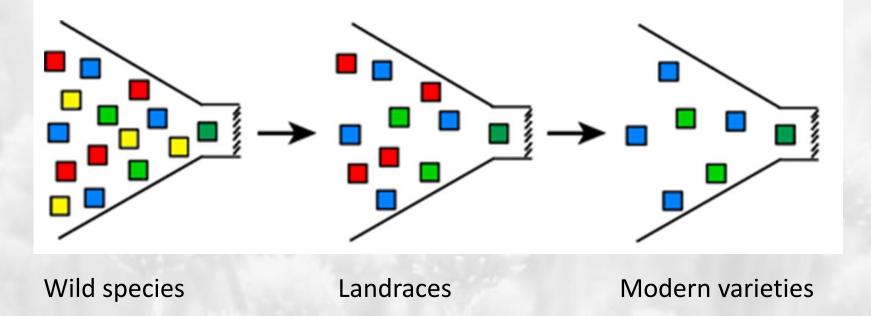
N. Maxted, B. Bartha, N. Castañeda Álvarez, K. Čivić, S. de Haan, A. Drucker, E. Dulloo, L. Frese, J. Hawley, V. Holubec, J. Iriondo, J. Magos Brehm, C. Mba, B. McCarthy, V. Negri, A. Palmé, J. Phillips, L. Raggi, P. Ralli, N. Tas, T. J.L. van Hintum, J. Weibull, S. Weise H. Vincent and S. Kell

Third Jack Harlan International Symposium 5th June 2019 SupAgro, Montpelier, France


Talk overview

- The problem of plant agrobiodiversity conservation is:
 - CWR / LR are threatened and poorly conserved and lack of diversity is now inhibiting crop improvement
 - No holistic ABD conservation integration at global, regional, national and local geographic scales
 - Uncomplementary conservation
 - Application of new techniques offer more comprehensive conservation e.g. at the global level is highlighting ABD hotspots
- Establishment of an in situ ABD networks for Europe
 - Function
 - Structure
 - Governance
 - Integration of in situ with ex situ
 - Transforming gene banks into genetic Resource centres

Humans beyond the planets carrying capacity?


- 7.22 billion in 2019, 78% live in developing countries (UN, 2019)
- 9.6 billion by 2050, 86% in developing countries (primarily Africa)

• To feed humans in 2050 require food supplies to increase by 60% globally (FAO, 2011)

• Climate change may reduce agricultural production by 2% each decade by 2050 (IPCC, 2014)

Where is adaptive diversity?

Domestication = loss of genetic diversity For tomato 95% of genetic diversity in genepool is located in wild *Lycopersicon / Solanum* spp. (Tanksley and McCouch, 1997)

Where is adaptive diversity?

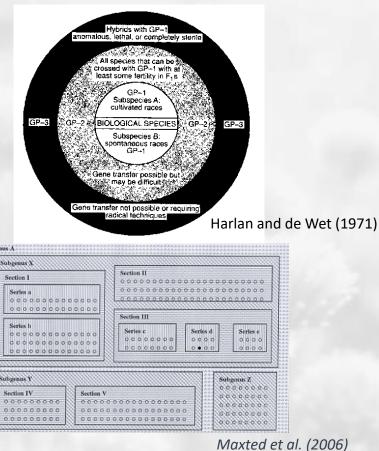
GP1a Breeders' lines & varieties e.g. Maris otter

GP1a Landraces (LR) e.g. Bere on Hebrides Isles, Scotland.

GP1b Primary CWR e.g. Hordeum vulgare subsp. spontaneum

GP2 Secondary CWR e.g. Hordeum bulbosum

GP3 Other *Hordeum* spp.



Hordeum vulgare ssp. spontaneum

Relative genetic diversity held at each level of the barley genepool

What are crop wild relatives?

- Crop wild relatives (CWR) are wild plant species closely related to crops, including wild ancestors
- They have an indirect use as gene donors for crop improvement due to their relatively close genetic relationship to crops
- They are an important socio-economic resource that offer novel genetic diversity required to maintain future food security

Broad definition: *CWR = all taxa* within the same genus as a crop

Maxted et al. (2006)

More precise definition:

A crop wild relative is a wild plant taxon that has an indirect use derived from its relatively close genetic relationship to a crop; this relationship is defined in terms of the CWR belonging to gene pools 1 or 2, or taxon groups 1 to 4 of the crop

What are crop landraces?

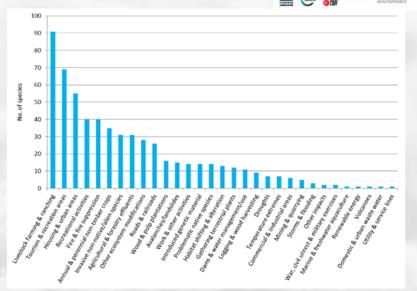
- Harlan (1975) defined a landrace as
 "populations that have evolved in subsistence agricultural societies as a result of millennia long, artificial human selection pressures, mediated through human migration, seed exchange as well as natural selection"
- Hawkes (1983) extended the term by adding the association with marginal environments, lack of direct competition with highly bred cultivars
- Bellon and Brush (1994) consider that a landrace is constituted by traditional farmers' varieties.
- Zeven (1998) in a review of landrace definitions concluded that as a landrace has a complex and indefinable nature, an all-embracing definition cannot be given

Camacho Villa et al. (2005) six characteristics:

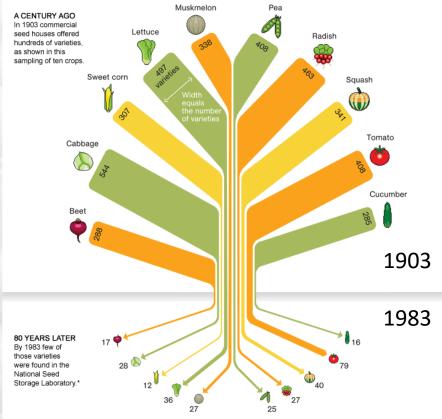
"A landrace is a dynamic population of a cultivated plant species that has

- 1. historical origin,
- 2. distinct identity and
- 3. lacks formal crop improvement, as well as often being
- 4. genetically diverse,
- 5. locally adapted and associated with
- 6. traditional farming systems"
- 7. + often has cultural associations

Why crop wild relatives? CWR are threatened and poorly conserved


- Red List assessments of 572 native European CWR in 25 Annex I priority crop gene pools
 - 16% of the species assessed are threatened or Near Threatened and 4% are Critically Endangered
- Yet analysis of European PGR *ex situ* collections found:
 - CWR taxa represent only 10% of total germplasm accessions and only 6% European CWR have any germplasm in gene banks (Dais 2010)
 - 72% of CWR globally are under-conserved in gene banks (Castañeda-Álvarez et al., 2016)
- Many CWR are found in existing protected areas, but they are not being actively monitored and managed
- Only a handful of CWR active genetic reserves have been established: *Triticum* CWR in Israel; *Zea perennis* in Mexico; *Solanum* CWR in Peru; wild Coffee CWR in Ethiopia; and *Beta patula* in Madeira (Maxted et al. 2016)

Kell et al. (2012) Red listed 571 European CWR species



European Red List of Vascular Plants

Why crop landraces?

LR are threatened and poorly conserved

- Most severely threat element of biodiversity are LANDRACES (Maxted, 2008)!
- Why?
 - We have no idea how many LR exist
 - Landrace maintainers are almost always older and their number is dwindling each year (= average age in Scottish islands is 65 in 2003)
 - Farmers are by definition commercial they grow what yields the highest economic return, they are <u>not</u> conservationists
 - Seed companies, breeders and government agencies are actively promoting modern cultivar replacement of LR
 - In most countries no agency has direct responsibility for their conservation
 - No country has a comprehensive inventory of extant LR
- Unless action is taken immediately LR loss will continue and complete extinction is the only possible conclusion

* CHANGED ITS NAME IN 2001 TO THE NATIONAL CENTER FOR GENETIC RESOURCES PRESERVATION JOHN TOMANIO, NGM STAFF. FOOD ICONS: QUICKHONEY SOURCE: RURAL ADVANCEMENT FOUNDATION INTERNATIONAL

Holistic Integration of PGRFA Conservation

applied research, on-farm diversity, ecosystems, aesthetic pleasure, etc.)

Utilitarianism +

- Conservation
 linked to
 Use
- Geography
 - National
 - Regional
 - Global

Complementary Conservation

- AIM: "combining *in situ* and *ex situ* techniques to maximize within-species diversity conservation and availability for the user"
- If the two approaches are combined
 - Ex situ conservation can provide
 - Facilitated use of *in situ* and *ex situ* conserved populations
 - Safety back-up of in situ conservation
 - Conservation of CWR species/populations for which in situ conservation is not the best approach (e.g. Syria CWR hotspot but currently)
 - In situ conservation can provide
 - Conservation of whole populations
 - Broad spectrum conservation (whole ecosystem, many species)
 - Conservation of adaptive processes in the natural environment (potential adaptation to changes in the climate, disease pressures etc.)
- Currently 99% funding is focused on *ex situ* conservation

Policy context

• CBD Strategic Plan agreed in Nagoya (2010) – Target 13 of 20

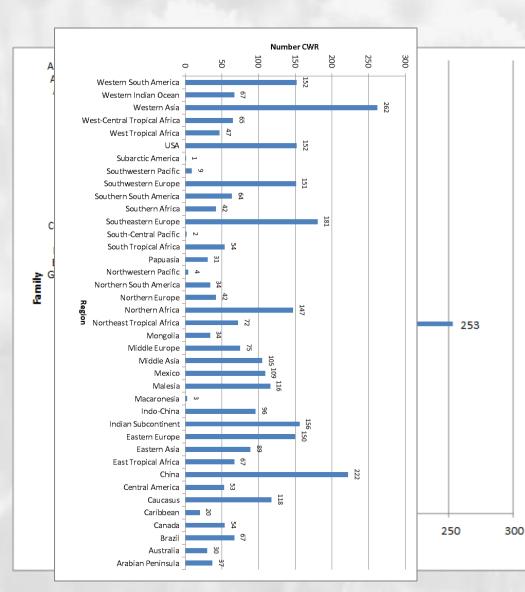
"Target 13. By 2020, The status of crop and livestock genetic diversity in agricultural ecosystems and of wild relatives has been improved. (SMART target to be developed at global and national levels) In addition, *in situ* conservation of wild relatives of crop plants could be improved inside and outside protected areas."

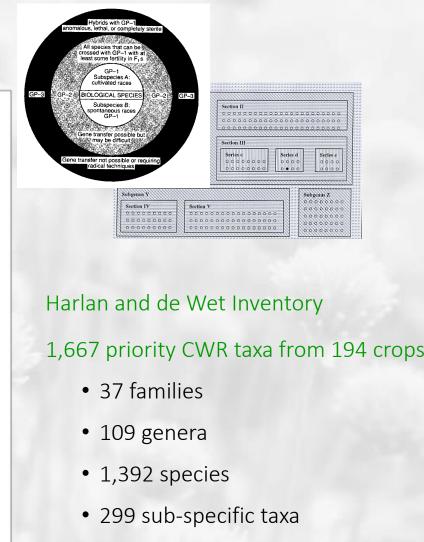
 CBD Global Strategy for Plant Conservation 2011 – 2020 (2010) – Target 9 of 16

"Target 9: 70 per cent of the genetic diversity of crops including their wild relatives and other socio-economically valuable plant species conserved, while respecting, preserving and maintaining associated indigenous and local knowledge."

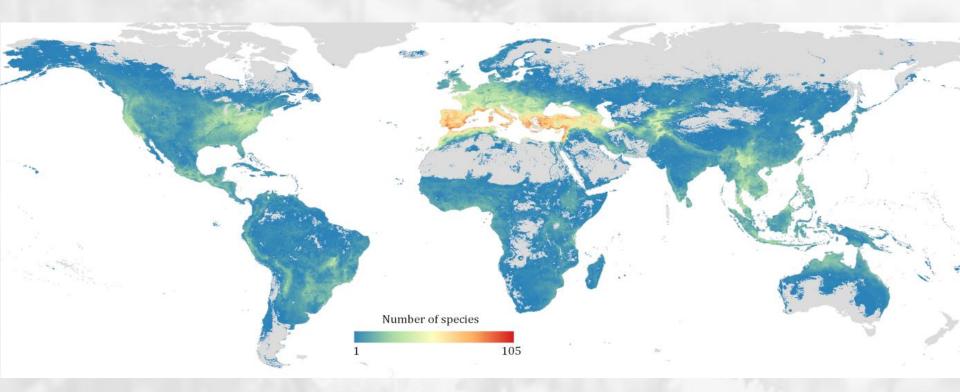
UN Sustainable Development Goals highlighted the need of eradicating extreme poverty and hunger = Goal 1, 2 and 3, but particularly 2.5

Vavilovia formosa: CWR of garden pea

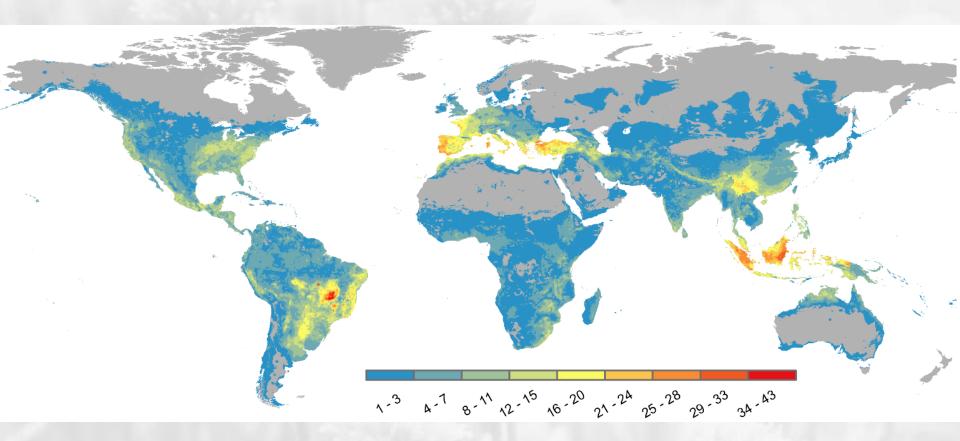

Crop Trust CWR Project


- Global Crop Diversity Trust project with Norwegian Gov. funding
- Primarily use orientated, but *ex situ* collecting in first 5 years:
 - List of gene pools and taxa to collect 92 genera with crops
 - 2. Ecogeographic data collection
 - Gap analysis using Maxted *et al.* (2008) / Ramírez-Villegas *et al.* (2010) methodology
 - 4. Field collection
 - 5. Ex situ storage

Global Crop Diversity Trust: global *ex situ* CWR conservation

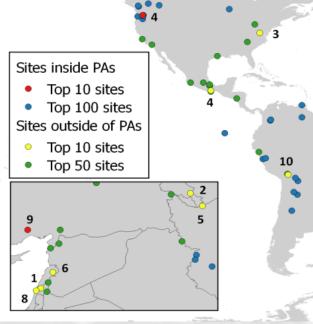


Vincent et al. (2013)


http://www.cwrdiversity.org/checklist/

Global CWR Conservation

Species richness map for the priority 1,394 CWR related to 194 crops at five arc minutes resolution (Vincent *et al.*, 2019).


Global CWR Conservation

Global collecting hotspots for High Priority CWR for 1,026 CWR related to 81 crop gene pools (Castañeda-Álvarez *et al.*, 2016).

Global CWR Conservation

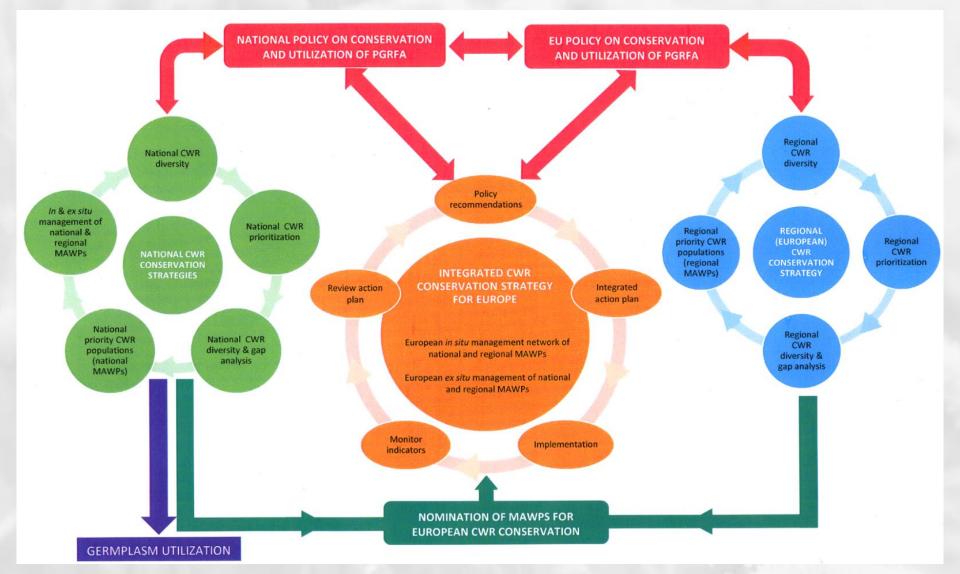
A PROPOSAL: **NI Vavilov Global Network** for CWR Conservation

- Each species has a minimum of 5 sites
- Sites are selected to maximise genetic diversity conservation using ELC maps
- All sites are tested for relative climate change impact

Top 170 sites for global in situ CWR conservation (100xPA and 50xnon-PA), with magnification on the Fertile Crescent and Caucasus (Vincent et al., 2019).

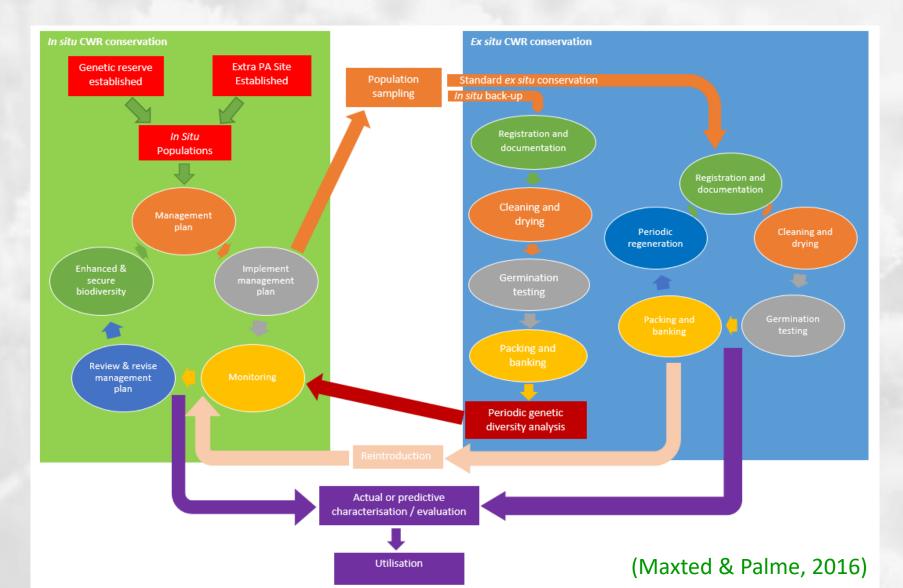
N.I. Vavilov

- Farmer's Pride (H2020 funded) has 44 partners from
- diverse communities farmer, agrobiodiversity,
- conservation and civil society NGOs; plant
- breeding/seed sector; public research institutes; and
- protected area networks (incl. Eurosite) D4.4
- European in situ conservation network of
- sites/stakeholders

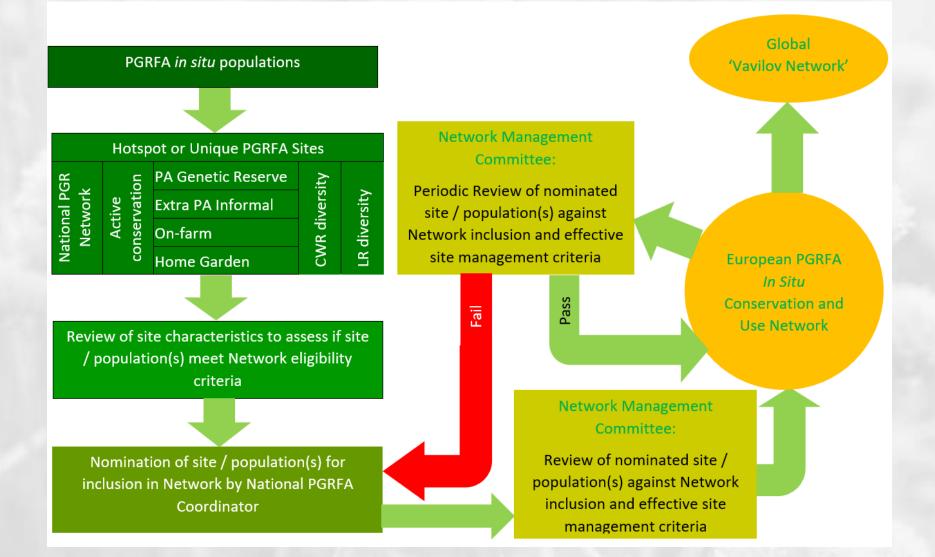

GenRes Bridge H2020

In situ networks of CWR populations Function

- Facilitating coordination;
- Fostering **stronger partnerships (funding)** at national, regional and global levels;
- Impacting positively on activities at countrylevel;
- Working with local communities;
- Active *in situ* conservation and safeguarding in perpetuity of important genetic resources;
- Better linkages between conservation and sustainable use.
- Significantly enhances diversity to users



In situ networks of CWR populations Structure



(Maxted et al. 2016)

In situ networks of CWR populations Integration of *in situ* and *ex situ*

In situ networks of CWR populations Governance: a work in progress

Take Home Message

- CWR have significant value for food security, but CWR also are under-conserved and threatened, CWR value is recognized and policy context has been established, action will achieve societal benefit
 - Pimentel et al. (1997) CWR worth \$115 billion toward increased crop yields per year
 - PWC (2013) CWR related to 29 major crops are worth \$115 billion toward increased crop yields per year
 - Analysis top 300 crops shows CWR used in breeding of 5% = potential value of \$2.3 trillion annually?
- GSPC Target 9 is NOT EVEN NEARLY ACHIEVED
 - Ex situ conservation 28% (Based on Castañeda-Álvarez et al., 2016)
 - In situ conservation 0-2% (Based on Maxted et al., 2017)
- Lack of adequately conserved and available CWR diversity is limiting crop improvement and food security –
 - 70% of gene pool genetic diversity is found in CWR taxa
 - In situ and ex situ genetic conservation
 - In situ conservation use is the weak point, therefore gene banks to PGRC

