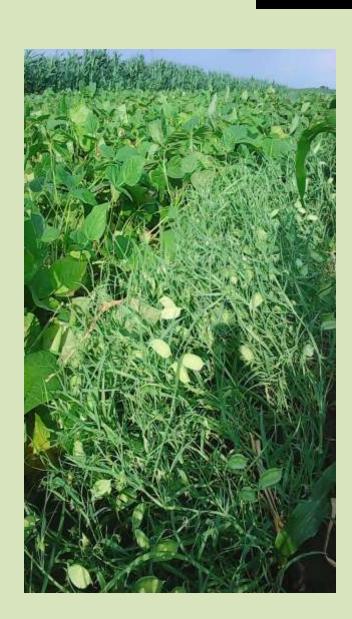


State of the art of *Lathyrus* and other grain legumes collections in Serbia

Mirjana Vasić Aleksandra Savić

Institute of Field and Vegetable Crops (Institute of National Importance for Republic of Serbia)

- <u>Public institute</u> operates as a research institute and seed company, linking basic research with applied research, farmers and the market
- Largest Institute overseen by the Ministry of Education, Science and Technological Development of the Republic of Serbia



Germplasm collections of **grain legume species** are maintained in:

- Vegetable Crops and Forage Crops Department of the Institute of Field and Vegetable Crops in Novi Sad
- Institute for Maize Research "Zemun Polje", Belgrade
 - Institute for Vegetable Crops, Smederevska Palanka

National Gene Bank is at the final stage of establishment

• Active germplasm collections (breeding collections) are formed and conserved within breeding programs of each species

Breeders maintain these collections

• Conservation of germplasm of less used species, that are currently not involved in breeding

Genetic resources of grain legumes in Vegetable Crop Department and Forage Crop Department, Institute of Field and Vegetable Crops Novi Sad

Genus	Species	English name	Number of accessions		
Cicer	arietinum	chichpea	58		
Ladhama	sativum	grass pea	35		
Lathyrus	spp.	vetchlings	52		
Lens	culinaris	naris lentil			
Lupinus	spp.	pp. lupins			
Pisum	sativum	common pea	975		
	fulvum	red-yellow pea	13		
Phaseolus	vulgaris	common bean	750		
	coccineus	runner bean	18		
Vicia	faba	faba bean	121		
	sativa	common vetch	496		
	grandiflora	large-flowered vetch	462		
	hirsuta	tiny vetch	46		
	narbonensis	Narbonne vetch	45		
	panonica	Hungarian vetch	44		
	villosa	Hairy vetch	27		
Vigna	angularis	adzuki bean	7		
	radiata	mung bean	7		
	unguiculata	cowpea	9		

- Passport data based on FAO/Bioversity Multi-Crop Passport Descriptors
- Evaluation of accessions according to International Descriptor Lists (plant, flower, seed traits)
- Evaluation of most important agronomical traits (yield, yield components, biotic and abiotic stress resistance)
- Molecular characterization of accessions applying different types of molecular markers
- Chemical composition

65 accesions of *Phaseolus vulagris*

and

13 accessions of *Phaseolus coccineus* included in EURISCO (SMARTLEG)

Lathyrus sp.

- Grass pea (*Lathyrus sativus* L.) is grown on smaller acreage in Serbia and its neighboring countries
- Nowadays Lathyrus is being successfully reintroduced

Spring-sown cultivars in organic production

• Dual-purpose crop for

high forage and grain yields

Lathyrus sp.

- Passport data
- Phenotypic characterization (part of the accessions)
- Agronomical field trials

Lathyrus breeding at Forage Crop Department

Main goals:

- earliness
- early spring and early summer drought resistance
- high forage dry matter yield and crude protein content
- high grain yield and crude protein content

Two recognized cultivars: Sitnica and Studenica

Research on intercropping of annual legumes for grain yield production, including grass pea

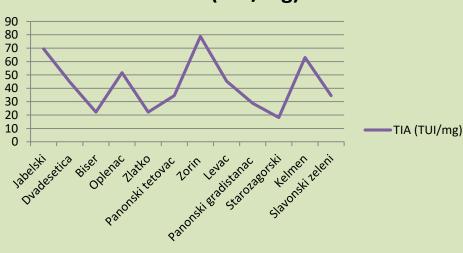
Lathyrus

Table 6
Concentrations of phenolic compounds found in *P. vulgaris* and *L. sativus* extracts (u.g/g dw), Sample labels (given in Table 2) are additionally suffixed with H (herb) or R (root).

Class	Compound	"Butmirski trešnjo"		"Zlatko"		"Sataja"		"Maksa"		"Erdevik"		"Gomiljani"	
		PV01H	PV01R	PV02H	PV02R	PV03H	PV03R	PV04H	PV04R	LS01H	LSOIR	LSOZH	LS02R
Hydroxybenzoic	p-Hydroxybenzoic acid	13.6 ± 0.82	9.41 ± 0.57	20.6 ± 1.2	11.7 ± 0.70	11.2 ± 0.67	10.3 ± 0.62	13.9 ± 0.83	15.5 ± 0.93		17.9 ± 1.1	23.4 ± 1.4	26.8 ± 1.6
acids	Protocatechuic acid	13.4 ± 1.1	<0.08	9.21 ± 0.74	<0.08	5.78 ± 0.46	2.56 ± 0.21	16.3 ± 1.3	3.20 ± 0.26	8.89 ± 0.71	4.81 ± 0.39	3.63 ± 0.29	1.17 ± 0.09
	Gentisic acid	18.7 ± 1.5	2.75 ± 0.22	16.8 ± 1.3	9.85 ± 0.79	26.5 ± 2.1	2.57 ± 0.21	44.0 ± 3.5	5.70 ± 0.46	<0.08	<0.08	<0.08	< 0.08
	Vanillic acid	33.9 ± 0.10	69.8 ± 0.21	35.0 ± 0.11	70.4 ± 0.21	53.5 ± 0.16	76.3 ± 0.23	53.5 ± 0.16	81.8 ± 0.25	9.05 ± 0.03	37.1 ± 0.11	18.0 ± 0.05	25.8 ± 0.08
	Gallic acid	< 0.12	< 0.12	< 0.12	< 0.12	< 0.12	< 0.12	66.9 ± 6.0	80.2 ± 7.2	67.2 ± 6.0	< 0.12	< 0.12	< 0.12
	Syringic acid			2.03 ± 0.01	9.00 ± 0.02	4.67 ± 0.01	6.83 ± 0.01	< 0.12		11.2 ± 0.02	3.19 ± 0.01	10.7 ± 0.02	2.53 ± 0.01
Hydroxycinnamic	p-Coumaric acid	34.3 ± 3.1	2.80 ± 0.25	27.0 ± 2.4	<0.2	7.82 ± 0.70	6.72 ± 0.61	6.31 ± 0.57	6.04 ± 0.54	14.2 ± 1.3	11.5 ± 1.0	9.50 ± 0.86	6.91 ± 0.62
acids	Ferulic acid	55.0 ± 0.01	15.7 ± 0.02	54.8 ± 0.01	5.89 ± 0.01	15.4 ± 0.02	9.98 ± 0.01	19.5 ± 0.02	7.36 ± 0.01	13.8 ± 0.01	7.80 ± 0.01	8.39 ± 0.01	3.04 ± 0.01
	Caffeic acid	324 ± 23	<0.8	339 ± 24	<0.8	12.3 ± 0.86	<0.8	15.4 ± 1.1	<0.8	10.2 ± 0.71	<0.8	15.0 ± 1.0	<0.8
Cyclohexanecarboxylic acids	Quinic acid	245 ± 0.25	800 ± 0.80	278 ± 0.28	781 ± 0.78	393 ± 0.39	1341 ± 1.3	292 ± 0.29	574 ± 0.57	304 ± 0.30	345 ± 0.35	250 ± 0.25	130±0.13
Chlorogenic acids	5-O-Caffeoylquinic acid	<8	<8	<8	<8	<8	<8	<8	<8	<8	<8	<8	<8
Coumarins	Esculetin	< 0.02	< 0.02	< 0.02	< 0.02	3.99 ± 0.24	< 0.02	< 0.02	< 0.02	2.91 ± 0.18	< 0.02	2.62 ± 0.16	< 0.02
Isoflavones	Daidzein	< 0.2	163 ± 15	< 0.2	198 ± 18	2.15 ± 0.19	235 ± 21	37.0 ± 3.3	385 ± 35	<0.2	<0.2	<0.2	< 0.2
	Genistein	< 2	145±10	1.35 ± 0.10	388 ± 27	5.80 ± 0.41	140 ± 9.8	17.0 ± 1.2	263 ± 18	<2	<2	<2	<2
Flavones	Apigenin	< 8	< 8	< 8	<8	<8	<8	<8	<8	<8	<8	<8	<8
	Baicalein	< 16	< 16	< 16	<16	<16	<16	<16	<16	<16	<16	<16	<16
	Luteolin	< 40	< 40	< 40	<40	<40	<40	<40	<40	<40	<40	<40	<40
	Chrysoeriol	< 4	< 4	< 4	<4	<4	<4	<4	<4	<4	<4	<4	<4
F <mark>l</mark> avone	Vitexin	< 0.2	3.02 ± 0.15	0.880 ± 0.04	2.91 ± 0.15	< 0.2	0.606 ± 0.03	0.935 ± 0.05	3.46 ± 0.17	0.661 ± 0.03	0.880 ± 0.04	< 0.2	< 0.2
gly-	Apigenin 7-O-glucoside	< 0.2	< 0.2	< 0.2	0.824 ± 0.04	0.256 ± 0.01	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2
CO-	Luteolin 7-O-glucoside	5.38 ± 0.16	< 4	5.29 ± 0.16	<4	4.62 ± 0.14	<4	6.53 ± 0.20	<4	<4	<4	<4	<4
sides	Apiin	1.21 ± 0.06	< 0.06	< 0.06	< 0.06	< 0.06	< 0.06	< 0.06	< 0.06	< 0.06	< 0.06	< 0.06	< 0.06
Flavonols	Kaempferol	<16	<16	<16	<16	<16	<16	<16	<16	<16	<16	<16	<16
	Quercetin	286 ± 0.86	<16	284 ± 0.85	<16	<16	<16	288 ± 0.87	<16	<16	<16	<16	<16
	Isorhamnetin	<40	<40	<40	<40	<40	<40	<40	<40	<40	<40	<40	132 ± 7.9
Flavonol	Quercitrin	5.60 ± 0.34	< 0.06	6.15 ± 0.37	< 0.06	< 0.06	< 0.06	16.5 ± 0.99	< 0.06	11.0 ± 0.66	< 0.06	< 0.06	< 0.06
gly-	Kaempferol 3-O-glucoside	42.9 ± 1.7	3.24 ± 0.13	40.3 ± 1.6	2.59 ± 0.10	24.0 ± 0.96	3.24 ± 0.13	91.5 ± 3.7	3.14 ± 0.13	1.70 ± 0.07	4.63 ± 0.19	2.69 ± 0.11	4.48 ± 0.18
co-	Hyperoside	347 ± 21	< 0.06	187 ± 11	< 0.06	488 ± 29	< 0.06	572 ± 34	< 0.06	< 0.06	< 0.06	< 0.06	< 0.06
sides	Quercetin 3-O-glucoside	344±10	< 0.06	196±5.9	< 0.06	646±19	< 0.06	565 ± 17	< 0.06	< 0.06	< 0.06	< 0.06	< 0.06
	Rutin	2495 ± 75	2.41 ± 0.07	2358 ± 71	105 ± 3.2	1061 ± 32	<2	2029 ± 61	31.2 ± 0.94	<2	<2	<2	<2
Flavanones	Naringenin	0.488 ± 0.03	38.06 ± 0.56	0.969 ± 0.07	17.3 ± 1.2	1.93 ± 0.14	4.10 ± 0.29	2.33 ± 0.16	13.4 ± 0.94	0.728 ± 0.05	2.98 ± 0.21	1.29 ± 0.09	8.70 ± 0.61
Flavanols	Catechin	< 0.4	< 0.4	<0.4	< 0.4	122 ± 0.12	< 0.4	<0.4	< 0.4	<0.4	<0.4	< 0.4	< 0.4
	Epicatechin	< 0.4	< 0.4	< 0.4	<0.4	<0.4	< 0.4	<0.4	< 0.4	94.1 ± 0.09	<0.4	<0.4	< 0.4
	TOTAL	4269 ± 139	1232 ± 28	3862 ± 121	1603 ± 52	2891 ± 88	1839±35	4153 ± 136	1480 ± 65	581 ± 12	436 ± 3.4	345 ± 4.3	341 ± 11

^{*}Compounds below quantification limit were given as <LoQ, where LoQ is method quantification limit, calculated from instrument quantification limit (given in Orčić et al., 2014) and sample dilution.


Šibul F., Orčić D., Vasić M., Anačkov G., Nađpal J., Savić A., Mimica-Dukić N. (2016): Phenolic profile, antioxidant and anti-inflamatory potential of herb and root extracts of seven selected legumes. Industrial Crops and Products, 83: 641-653


TIA (TUI/mg)

Tripsin inhibitor activity of selected faba bean accessions

Tripsin inhibitor activity of selected common bean cultivars

TIA (TUI/mg)

