Stephan Weise

Phenotypic data in EURISCO Status and plans

Third Meeting of the EURISCO Advisory Committee 7th July 2021

#FuturePlants

Leibniz Institute of Plant Genetics and Crop Plant Research (IPK)

Phenotypic data search in EURISCO

#FuturePlants

Leibniz Institute of Plant Genetics and Crop Plant Research (IPK)

Phenotypic data search in EURISCO

Wizard-based searches for

- Genus
- Species and trait
- Experiment
- Trait

Refine result

- Sort
- Filter
- Download
- Chart

#FuturePlants

Leibniz Institute of Plant Genetics and Crop Plant Research (IPK)

Dealing with phenotypic data: Great diversity

• Phenotypic data

- Determines value of germplasm for breeding and research
- Crop-specific traits and methods
- Many historical datasets
- Usually no data from high throughput phenotyping
- Data has to be aggregated or exchanged between organisations

Dealing with phenotypic data : Existing situation

Methods and Descriptors

- Crop-specific definitions of traits, methods etc. like IPGRI descriptor lists
- Often used in parts only and adapted to organisational needs

Exchange Formats

- E.g. Darwin Core germplasm extension (DwC-germplasm; Endresen et al. 2009)
- Great for computer scientists
- Difficult to handle for genebank curators

Ontologies

- Help to structure the (phenotypic) world
- Improve interoperability of data
- e.g. Crop Ontology (Arnaud et al. 2012)

#FuturePlants

Leibniz Institute of Plant Genetics and Crop Plant Research (IPK)

Dealing with phenotypic data: Current approach

- Data standardisation
 - About 600 germplasm collections in Europe, around 400 in EURISCO
 - No standardisation of trait, scale or experimental design
 - Pragmatic approach: Import of existing data as-is to reach critical mass
- Data exchange
 - Only standardisation of exchange format
 - As simple as possible
 - As few fields as possible
 - ightarrow "minimum consensus"
- Data management
 - Highly abstracted, following the single-observation concept (van Hintum et al. 1992)
 - Omitting fine-grained metadata

#FuturePlants

Dealing with phenotypic data: Data overview

- Extension available since 2016
- 2,680,511 records
- 90,569 accs. with phenotypic data
- 17 countries
- 68 phenotypic datasets
- 3,862 experiments
- 9,415 traits
- Increasingly accepted as repository, but limited comparability

Q~	Go Rows 10 Actions ~
▼	Now text contains 'flowering time' $ imes$
1 - 10 of 61 >	
Trait Name	Trait Method
Flowering time	Count days after 1 April when >50% plants show inflorescence emergence, 999=not flowering during experiment
Flowering time end	(3=early, 7=late)
Flowering time	Number of days between the date of sowing and the date of appearance of the first flower head
Flowering time begin	Days after sowing when 50% of plants have opened the first flower(s)
Flowering time	Count days after 1 September when >50% plants show inflorescence emergence, 999=not flowering during experiment
Flowering time	No treatment. Count days from planting to corolla 1st flower visible (1=<41. 2=41-60. 3=61-80 8=161-180. 9=>180)
Flowering time	Count days to 10% of flowers have opened after sowing
Flowering time	count days after 1 May when 50% of florets have opened on 3 flowers
Flowering time begin	(3=early, 7=late)
Flowering time begin	Count the days from 25/5 to 50% of plants in flower

as of 2021-06-23

Dealing with phenotypic data: Towards FAIR data

- Data harmonisation
 - Experiment set-up, treatment etc.
 - Reach MIAPPE-compliance (Krajewski et al. 2015)
- Better structuring
 - Traits/methods/scales
 - Development of common vocabularies/approaches
 - Improve comparability
 - Mapping onto ontology terms
 - Ontology of choice: Crop Ontology (Arnaud et al. 2012)
 - Crux: Sustainability of ontologies
- Provide training + helpdesk
- Additional activities together with various partners, e.g. AGENT

#FuturePlants

Leibniz Institute of Plant Genetics and Crop Plant Research (IPK)

AGENT as a blueprint

- Current limitations
 - EURISCO data exchange format represents a "minimum consensus"
 - Difficult to compile files manually
 - Very limited reproducibility and comparability
- AGENT approach
 - Simplification of data collection \rightarrow one column per trait to support manual recording
 - Distinction in two types of data

Two "types" of phenotypic data

- Historical phenotypic data
 - Existing data, e.g. from seed multiplication
 - Collected over a long period of time
 - Relatively few metadata available
 - Focus on simple traits

- New experimental data
 - Desirable to describe the experiments as comprehensive as possible
 - Harmonisation of data of the various project partners
 - Traits
 - Methods
 - Experimental set-ups

#FuturePlants

Leibniz Institute of Plant Genetics and Crop Plant Research (IPK)

Two "types" of phenotypic data (cont.)

- Historical phenotypic data
 - Simplified EURISCO-EVA templates should be sufficient
 - \rightarrow Already in use

- New experimental data
 - Templates presently used in EURISCO do not allow to collect additional metadata
 - Only very little information can be represented
 - Focussing on providers managing data in database management systems
 - Strive for increased user-friendliness
 - Consider more extensive metadata
 - Allow full MIAPPE compliance
 - \rightarrow Under development

Separate template for new data?

- Data to be collected
 - Actual observation data \rightarrow relatively easy to handle
 - Metadata \rightarrow can be compiled during a datathon
 - Experimental set-up (start and end, plot length and width, number of rows, distance between rows, seeds/m², experimental design, ...)
 - Treatments (herbicide, fungicide, insecticide, fertiliser, growth regulator, ...)
 - Experimental location (location/site name, coordinates, average values of precipitation, temperature, soil type, ...)
 - Soil information (N, pH, K₂O, P₂O5, Mg,)
 - Traits
 - Definition (name, description, unit, type, method, ontology term)
 - Range of values (rating values, allowed min/max values)

M. Grau / IPK

Thank you for your attention

